If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15x-42=0
a = 1; b = 15; c = -42;
Δ = b2-4ac
Δ = 152-4·1·(-42)
Δ = 393
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{393}}{2*1}=\frac{-15-\sqrt{393}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{393}}{2*1}=\frac{-15+\sqrt{393}}{2} $
| b^2-96^b=0 | | 7y-19=3-4y | | 2(4x-11)+9=199 | | -1+11a=63a | | 4x+4=7x+12 | | 2a-13=5a+32 | | 5p^2-2=423 | | w+63=94 | | X-16=5x-70 | | 15h-3=8h-45 | | 10-2x=x+43 | | 5^(3x+4)=7 | | 8c-48=9c+30 | | 1/2(m+6)=4m-8 | | g/3+5=6 | | 3q+-21=27 | | 20-d=-20+2d+1 | | 2(10−2x)=4(2x+2) | | 1-8y=19-6y | | -12s-4=20-9s | | 24-3=-y+4 | | 12s-4=20-9s | | 15+8x=6x-19 | | 3(2k-2)=-2(4k11) | | t-810=15 | | (x-1)(8x-1)=18x | | 2x-5=x+24 | | F^-1(x)=3x+8 | | -9+p=2p | | 2u=17+3u | | 6(4w+7)/4=8 | | 30=70x |